Contact

For the latest updates on the center, please click

If users have any suggestions or questions, or wish to share your records, please contact ecnu309205@126.com.

References: (Load related journal papers in English only)
  1. Sheng Z, Xie J, Zhang S, et al. Deep Learning for Analysis of Two-Dimensional Materials in High-Resolution Transmission Electron Microscopy Image. 2023 IEEE Int. Symp. Phys. Fail. Anal. Integr. Circuits (IPFA) 2023, 1-5. https://doi.org/10.1109/ipfa58228.2023.10249141

  2. Dong Z, Sun Z, Yang X, et al. Catching the Missing EM Consequence in Soft Breakdown Reliability in Advanced FinFETs: Impacts of Self-heating, On-State TDDB, and Layout Dependence. 2023 IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits) 2023, 1-2. https://doi.org/10.23919/vlsitechnologyandcir57934.2023.10185380

  3. Cheng Z, Xie X, Yang Y, et al. Neural network approach for ferroelectric hafnium oxide phase identification at the atomistic scale. Mater. Today Electron. 2023, 3100027. https://doi.org/10.1016/j.mtelec.2023.100027

  4. Yang X, Xue Y, Dong Z, et al. Interconnection Reliability on FinFET Devices. 2022 IEEE Int. Symp. Phys. Fail. Anal. Integr. Circuits (IPFA) 2022, 1-4. https://doi.org/10.1109/ipfa55383.2022.9915773

  5. Luo C, Dong Z, Xu T, et al. Tailoring the phase transition of silver selenide at the atomistic scale. Nanoscale 2022, 14(43), 16077-16084. https://doi.org/10.1039/d2nr04248g

  6. Cheng Z, Wang C, Wu X, et al. Review in situ transmission electron microscope with machine learning. J. Semicond. 2022, 43(8), 081001. https://doi.org/10.1088/1674-4926/43/8/081001

  7. Zhu Y, Yuan D, Zhang H, et al. Atomic-scale insights into the formation of 2D crystals from in situ transmission electron microscopy. Nano Res. 2021, 14(6), 1650-1658. https://doi.org/10.1007/s12274-020-3034-z

  8. Zheng H. Imaging, understanding, and control of nanoscale materials transformations. MRS Bull. 2021, 46(5), 443-450. https://doi.org/10.1557/s43577-021-00113-4

  9. Yin ZW, Zhao W, Li J, et al. Advanced Electron Energy Loss Spectroscopy for Battery Studies. Adv. Funct. Mater. 2021, 32(1). https://doi.org/10.1002/adfm.202107190

  10. Yang X, Qing Y, Chang-Liao K-S, et al. Metal Migration Induced Breakdown from Gate Contact in Bulk FinFET Devices. 2021 IEEE Int. Symp. Phys. Fail. Anal. Integr. Circuits (IPFA) 2021, 1-4. https://doi.org/10.1109/ipfa53173.2021.9617380

  11. Yang SH, Choi W, Cho BW, et al. Deep Learning‐Assisted Quantification of Atomic Dopants and Defects in 2D Materials. Adv. Sci. 2021, 8(16), 2101099. https://doi.org/10.1002/advs.202101099

  12. Wang C, Jin M, Liu D, et al. VSe2 quantum dots with high-density active edges for flexible efficient hydrogen evolution reaction. J. Phys. D: Appl. Phys. 2021, 54(21), 214006. https://doi.org/10.1088/1361-6463/abe78d

  13. Spurgeon SR, Ophus C, Jones L, et al. Towards data-driven next-generation transmission electron microscopy. Nat. Mater. 2021, 20(3), 274-279. https://doi.org/10.1038/s41563-020-00833-z

  14. Lin Y, Zhou M, Tai X, et al. Analytical transmission electron microscopy for emerging advanced materials. Matter 2021, 4(7), 2309-2339. https://doi.org/10.1016/j.matt.2021.05.005

  15. Zhou M, Wang W, Lu J, et al. How defects influence the photoluminescence of TMDCs. Nano Res. 2020, 14(1), 29-39. https://doi.org/10.1007/s12274-020-3037-9

  16. Zhang H, Jiang X, Wang Y, et al. Preface to the Special Issue on Monoelemental 2D Semiconducting Materials and Their Applications. J. Semicond. 2020, 41(8), 080101. https://doi.org/10.1088/1674-4926/41/8/080101

  17. Yao L, Ou Z, Luo B, et al. Machine Learning to Reveal Nanoparticle Dynamics from Liquid-Phase TEM Videos. ACS Cent. Sci. 2020, 6(8), 1421-1430. https://doi.org/10.1021/acscentsci.0c00430

  18. Wang C, Wu X, Zhang X, et al. Iron-doped VSe2 nanosheets for enhanced hydrogen evolution reaction. Appl. Phys. Lett. 2020, 116(22), 223901. https://doi.org/10.1063/5.0008092

  19. Plotkin-Swing B, Corbin GJ, Carlo SD, et al. Hybrid pixel direct detector for electron energy loss spectroscopy. Ultramicroscopy 2020, 217113067. https://doi.org/10.1016/j.ultramic.2020.113067

  20. O'Leary CM, Allen CS, Huang C, et al. Phase reconstruction using fast binary 4D STEM data. Appl. Phys. Lett. 2020, 116(12), 124101. https://doi.org/10.1063/1.5143213

  21. Lee B, Yoon S, Lee JW, et al. Statistical Characterization of the Morphologies of Nanoparticles through Machine Learning Based Electron Microscopy Image Analysis. ACS Nano 2020, 14(12), 17125-17133. https://doi.org/10.1021/acsnano.0c06809

  22. Ge M, Su F, Zhao Z, et al. Deep learning analysis on microscopic imaging in materials science. Mater. Today Nano 2020, 11100087. https://doi.org/10.1016/j.mtnano.2020.100087

  23. Dong Z, Ma Y. Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy. Nat. Commun. 2020, 11(1), 1588. https://doi.org/10.1038/s41467-020-15388-5

  24. Barthelmi K, Klein J, Hötger A, et al. Atomistic defects as single-photon emitters in atomically thin MoS2. Appl. Phys. Lett. 2020, 117(7), 070501. https://doi.org/10.1063/5.0018557

  25. Zhang J, Yu Y, Wang P, et al. Characterization of atomic defects on the photoluminescence in two‐dimensional materials using transmission electron microscope. InfoMat 2019, 1(1), 85-97. https://doi.org/10.1002/inf2.12002

  26. Xu H, Wu X, Tian X, et al. Dynamic structure-properties characterization and manipulation in advanced nanodevices. Mater. Today Nano 2019, 7100042. https://doi.org/10.1016/j.mtnano.2019.100042

  27. Schorb M, Haberbosch I, Hagen WJH, et al. Software tools for automated transmission electron microscopy. Nat. Meth. 2019, 16(6), 471-477. https://doi.org/10.1038/s41592-019-0396-9

  28. Mendes RG, Pang J, Bachmatiuk A, et al. Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures. ACS Nano 2019, 13(2), 978-995. https://doi.org/10.1021/acsnano.8b08079

  29. Li W, Ning H, Yu Z, et al. Reducing the power consumption of two-dimensional logic transistors. J. Semicond. 2019, 40(9), 091002. https://doi.org/10.1088/1674-4926/40/9/091002

  30. Li Q, Lu J, Gupta P, et al. Engineering Optical Absorption in Graphene and Other 2D Materials: Advances and Applications. Adv. Opt. Mater. 2019, 7(20). https://doi.org/10.1002/adom.201900595

  31. Kalinin SV, Lupini AR, Dyck O, et al. Lab on a beam—Big data and artificial intelligence in scanning transmission electron microscopy. MRS Bull. 2019, 44(7), 565-575. https://doi.org/10.1557/mrs.2019.159

  32. Jiang J, Ni Z. Defect engineering in two-dimensional materials. J. Semicond. 2019, 40(7), 070403. https://doi.org/10.1088/1674-4926/40/7/070403

  33. Fan Z, Zhang L, Baumann D, et al. In Situ Transmission Electron Microscopy for Energy Materials and Devices. Adv. Mater. 2019, 31(33), e1900608. https://doi.org/10.1002/adma.201900608

  34. Dan J, Zhao X, Pennycook SJ. A machine perspective of atomic defects in scanning transmission electron microscopy. InfoMat 2019, 1(3), 359-375. https://doi.org/10.1002/inf2.12026

  35. Kim BH, Yang J, Lee D, et al. Liquid‐Phase Transmission Electron Microscopy for Studying Colloidal Inorganic Nanoparticles. Adv. Mater. 2018, 30(4). https://doi.org/10.1002/adma.201703316

  36. Jiang Y, Zhang Z, Yuan W, et al. Recent advances in gas-involved in situ studies via transmission electron microscopy. Nano Res. 2018, 11(1), 42-67. https://doi.org/10.1007/s12274-017-1645-9

  37. Tao L, Chen K, Chen Z, et al. Centimeter-Scale CVD Growth of Highly Crystalline Single-Layer MoS2 Film with Spatial Homogeneity and the Visualization of Grain Boundaries. ACS Appl. Mater. Interfaces 2017, 9(13), 12073-12081. https://doi.org/10.1021/acsami.7b00420

  38. Luo C, Wang C, Wu X, et al. In Situ Transmission Electron Microscopy Characterization and Manipulation of Two‐Dimensional Layered Materials beyond Graphene. Small 2017, 13(35). https://doi.org/10.1002/smll.201604259

  39. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60(6), 84-90. https://doi.org/10.1145/3065386

  40. Ji Q, Li C, Wang J, et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. arXiv 2017, 17(8), 4908-4916.
    https://doi.org/10.48550/arxiv.1703.09582

  41. Chen M, Dai W, Sun SY, et al. Convolutional Neural Networks for Automated Annotation of Cellular Cryo-Electron Tomograms. Nat. Meth. 2017, 14(10), 983-985. |
    https://doi.org/10.1038/nmeth.4405

  42. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015.
    https://doi.org/10.48550/arxiv.1505.04597

  43. Ni B, Wang X. Face the Edges: Catalytic Active Sites of Nanomaterials. Adv. Sci. 2015, 2(7), 1500085.
    https://doi.org/10.1002/advs.201500085

  44. Acerce M, Voiry D, Chhowalla M. Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. Nat. Nanotechnol. 2015, 10(4), 313-318.
    https://doi.org/10.1038/nnano.2015.40

  45. Warner JH, Lin Y-C, He K, et al. Atomic Level Spatial Variations of Energy States along Graphene Edges. Nano Lett. 2014, 14(11), 6155-6159.
    https://doi.org/10.1021/nl5023095

  46. Qiao J, Kong X, Hu Z-X, et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5(1), 4475.
    https://doi.org/10.1038/ncomms5475

  47. Liao H-G, Zherebetskyy D, Xin H, et al. Facet development during platinum nanocube growth. Science 2014, 345(6199), 916-919.
    https://doi.org/10.1126/science.1253149